Actuators (Jul 2023)

Impedance Force Control of Manipulator Based on Variable Universe Fuzzy Control

  • Dexin Kong,
  • Qingjiu Huang

DOI
https://doi.org/10.3390/act12080305
Journal volume & issue
Vol. 12, no. 8
p. 305

Abstract

Read online

Impedance control is a classic and straightforward control method that finds wide applications in various fields. However, traditional constant impedance control requires prior knowledge of the environment’s stiffness and position information. If the environmental information is unknown, constant impedance control is not capable of handling the task. To address this, this paper proposes a variable universe fuzzy model reference adaptive impedance control method that achieves effective force tracking even in the presence of unknown environmental information. A variable universe fuzzy controller was employed to determine the impedance parameters. The force tracking error and its rate of change were used as two input parameters for the variable universe fuzzy controller, which utilizes fuzzy inference to obtain the incremental values of the impedance parameters. For the introduced model reference controller, a novel adaptive law was employed to obtain the coefficients for contact force and torque. Subsequently, the contact force of the manipulator in Cartesian space was taken as the research object, and a simulation model of a six-joint manipulator was established in MATLAB/Simulink. By comparing it with the constant impedance control method, the feasibility and effectiveness of this control approach were validated.

Keywords