Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process
Vladimir E. Kuznetsov,
Alexey N. Solonin,
Oleg D. Urzhumtsev,
Richard Schilling,
Azamat G. Tavitov
Affiliations
Vladimir E. Kuznetsov
Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, NUST MISIS, Moscow 119049, Russia
Alexey N. Solonin
Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, NUST MISIS, Moscow 119049, Russia
Oleg D. Urzhumtsev
Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, NUST MISIS, Moscow 119049, Russia
Richard Schilling
School of Textiles and Design, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
Azamat G. Tavitov
Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISIS”, Leninskiy Prospekt 4, NUST MISIS, Moscow 119049, Russia
The current paper studies the influence of geometrical parameters of the fused deposition modeling (FDM)—fused filament fabrication (FFF) 3D printing process on printed part strength for open source desktop 3D printers and the most popular material used for that purpose—i.e., polylactic acid (PLA). The study was conducted using a set of different nozzles (0.4, 0.6, and 0.8 mm) and a range of layer heights from the minimum to maximum physical limits of the machine. To assess print strength, a novel assessment method is proposed. A tubular sample is loaded in the weakest direction (across layers) in a three-point bending fixture. Mesostructure evaluation through scanning electronic microscopy (SEM) scans of the samples was used to explain the obtained results. We detected a significant influence of geometric process parameters on sample mesostructure, and consequently, on sample strength.