AIP Advances (Feb 2020)

Strong suppression of Curie temperature of spin-polarized ferromagnet La1−xSrxMnO3 by application of dynamic strain

  • M. Mito,
  • K. Tsuruta,
  • T. Tajiri,
  • N. Ikeda,
  • M. Ohkuma,
  • A. Kohno,
  • K. Konishi,
  • H. Deguchi

DOI
https://doi.org/10.1063/1.5124951
Journal volume & issue
Vol. 10, no. 2
pp. 025220 – 025220-7

Abstract

Read online

The ferromagnetic state of the spin-polarized ferromagnet La1−xSrxMnO3 is stabilized in the metallic region by strong coupling between localized spins in the t2g orbital and conduction electrons in the eg orbital. We prepared polycrystalline La1−xSrxMnO3 films (x = 0.15, 0.25, or 0.30) by deposition on an oxidized Si substrate. The three types of La1−xSrxMnO3 films were in the ferromagnetic rhombohedral phase, and their Curie temperatures, TC, evaluated from the midpoint of ac magnetization, were 305 K, 335 K, and 338 K, respectively. By applying expansion-mode acoustic vibration to the crystal structure of La1−xSrxMnO3, we observed a remarkable decrease (as large as 70 K) in TC. The applied structural perturbation causes a decrease in the possibility of conduction electron hopping and an increase in the Jahn–Teller distortion. The former is more effective for decreasing TC than the latter.