Microorganisms (Nov 2021)

YgfY Contributes to Stress Tolerance in <i>Shewanella oneidensis</i> Neither as an Antitoxin Nor as a Flavinylation Factor of Succinate Dehydrogenase

  • Ming-Xing Zhang,
  • Kai-Li Zheng,
  • Ai-Guo Tang,
  • Xiao-Xia Hu,
  • Xin-Xin Guo,
  • Chao Wu,
  • Yuan-Yuan Cheng

DOI
https://doi.org/10.3390/microorganisms9112316
Journal volume & issue
Vol. 9, no. 11
p. 2316

Abstract

Read online

YgfY(SdhE/CptB) is highly conserved while has controversial functions in bacteria. It works as an antitoxin and composes a type IV toxin–antitoxin system with YgfX(CptA) typically in Escherichia coli, while functions as an flavinylation factor of succinate dehydrogenase and fumarate reductase typically in Serratia sp. In this study, we report the contribution of YgfY in Shewanella oneidensis MR-1 to tolerance of low temperature and nitrite. YgfY deficiency causes several growth defects of S. oneidensis MR-1 at low temperature, while YgfX do not cause a growth defect or morphological change of S. oneidensis MR1-1 and E. coli. YgfY do not interact with FtsZ and MreB nor with YgfX examined by bacterial two-hybrid assay. YgfY effect on growth under low temperature is not attributed to succinate dehydrogenase (SDH) because a mutant without SDH grows comparably with the wild-type strain in the presence of succinate. The ygfY mutant shows impaired tolerance to nitrite. Transcription of nitrite reductase and most ribosome proteins is significantly decreased in the ygfY mutant, which is consistent with the phenotypes detected above. Effects of YgfY on growth and nitrite tolerance are closely related to the RGXXE motif in YgfY. In summary, this study demonstrates pleiotropic impacts of YgfY in S. oneidensis MR-1, and sheds a light on the physiological versatility of YgfY in bacteria.

Keywords