Agronomy (Oct 2024)

Optimizing Nitrogen Input Increased Yield and Efficiency in Maize-Soybean Strip Intercropping System

  • Yuwen Liang,
  • Qiannan Liu,
  • Jinghan Zeng,
  • Fei Xiong,
  • Jian Guo,
  • Guanghao Li,
  • Dalei Lu

DOI
https://doi.org/10.3390/agronomy14112472
Journal volume & issue
Vol. 14, no. 11
p. 2472

Abstract

Read online

Optimizing nitrogen (N) fertilizer combination is a crucial measure to maximize yield and production efficiency in a maize-soybean strip intercropping system (MSSI). In this field experiment, six maize/soybean N input combinations (0 kg ha−1, F0; 255/30 kg ha−1, F1; 255/45 kg ha−1, F2; 255/60 kg ha−1, F3; 210/45 kg ha−1, F4; 300/45 kg ha−1, F5) were set in 2022 and 2023. The results indicated that optimizing N combination (maize/soybean, 255/45 kg ha−1) could synergistically increase yield and economic benefits. Path analysis results showed that the grain numbers in maize and soybean emerged as the most critical yield-affecting factors. Compared with F0, F5 showed the highest grain yield during the 2-year experiment, and the net return increased by 86.1% (F1), 133.3% (F2), 87.4% (F3), 104.7% (F4), and 128.3% (F5), respectively. Optimizing N input under F2 and F5 notably enhanced the leaf area index (LAI) of maize at the milk stage (R3) and soybean at the full pod stage (R4). Additionally, optimization of N distribution in maize stems at the tassel stage (VT) and soybean leaves at the initial flowering stage (R1) facilitated increased dry matter and N accumulation at the maturity stage, resulting in final land equivalent ratios (LER) of 1.44 and 1.55, respectively. Our results provide a more valuable field N combination for summer maize planting areas (sandy soil areas) in Huang-Huai-Hai and southern China, thus promoting the wider application of MSSI.

Keywords