NeuroImage (Oct 2024)

Resting-state functional connectivity involved in tactile orientation processing

  • Ryoki Sasaki,
  • Sho Kojima,
  • Kei Saito,
  • Naofumi Otsuru,
  • Hiroshi Shirozu,
  • Hideaki Onishi

Journal volume & issue
Vol. 299
p. 120834

Abstract

Read online

Background: Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. Methods: In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. Results: We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1–superior parietal lobule and S1–adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. Discussion: The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.

Keywords