Heliyon (Feb 2024)
Advancements in tissue engineering for articular cartilage regeneration
Abstract
Articular cartilage injury is a prevalent clinical condition resulting from trauma, tumors, infection, osteoarthritis, and other factors. The intrinsic lack of blood vessels, nerves, and lymphatic vessels within cartilage tissue severely limits its self-regenerative capacity after injury. Current treatment options, such as conservative drug therapy and joint replacement, have inherent limitations. Achieving perfect regeneration and repair of articular cartilage remains an ongoing challenge in the field of regenerative medicine. Tissue engineering has emerged as a key focus in articular cartilage injury research, aiming to utilize cultured and expanded tissue cells combined with suitable scaffold materials to create viable, functional tissues. This review article encompasses the latest advancements in seed cells, scaffolds, and cytokines. Additionally, the role of stimulatory factors including cytokines and growth factors, genetic engineering techniques, biophysical stimulation, and bioreactor systems, as well as the role of scaffolding materials including natural scaffolds, synthetic scaffolds, and nanostructured scaffolds in the regeneration of cartilage tissues are discussed. Finally, we also outline the signaling pathways involved in cartilage regeneration. Our review provides valuable insights for scholars to address the complex problem of cartilage regeneration and repair.