Agronomy (May 2022)

Heat-Stress-Mitigating Effects of a Protein-Hydrolysate-Based Biostimulant Are Linked to Changes in <i>Protease, DHN</i>, and <i>HSP</i> Gene Expression in Maize

  • Irina I. Vaseva,
  • Lyudmila Simova-Stoilova,
  • Anelia Kostadinova,
  • Bistra Yuperlieva-Mateeva,
  • Tania Karakicheva,
  • Valya Vassileva

DOI
https://doi.org/10.3390/agronomy12051127
Journal volume & issue
Vol. 12, no. 5
p. 1127

Abstract

Read online

The growth-promoting and heat-mitigating effects of a commercially available protein-hydrolysate-based biostimulant, Kaishi, during the early vegetative stage was investigated by applying it as a foliar spray on soil-grown maize plants or in the nutrient solution of hydroponically grown plants. At 10−3 dilution, the biostimulant inhibited germination and delayed the growth progress, while at 10−6–10−12 dilutions, it promoted shoot and root growth. Heat stress caused biomass reduction, decreased leaf pigment content and the chlorophyll a/chlorophyll b (chl a/b) ratio, caused starch depletion, and increased lipid peroxidation. Kaishi priming resulted in the substantial mitigation of negative stress effects, maintaining growth, stabilizing pigment content and the chl a/b ratio, restoring the leaf starch content, lowering the malondialdehyde (MDA) level, and significantly increasing the free proline content. The expression profiles of a set of genes coding for heat shock proteins (HSPs), dehydrins (DHNs), and proteases were analysed using qRT-PCR after heat stress exposure. The biostimulant-treated plants had higher transcript levels of certain HSPs, DHNs, and protease-coding genes, which remained stable or increased after the applied stress. The results demonstrate that very low concentrations of the biostimulant exerted stress-mitigating effects that could be linked to organ-specific changes in the gene expression of certain stress-inducible proteins.

Keywords