MOF Derived Manganese Oxides Nanospheres Embedded in N-Doped Carbon for Oxygen Reduction Reaction
Zhibin Zhang,
Ge Huo,
Fengzhan Si,
Xian-Zhu Fu,
Shao-Qing Liu,
Jing-Li Luo
Affiliations
Zhibin Zhang
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Ge Huo
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Fengzhan Si
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Xian-Zhu Fu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Shao-Qing Liu
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Jing-Li Luo
Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
Manganese oxides (MnOx) have been regarded as promising catalyst candidates for oxygen reduction reaction (ORR) due to their natural abundance and extremely low toxicity. However, the intrinsic low conductivity of MnOx limits their application. In this work, Mn oxide embedded in N doped porous carbon (MnOx@C-N) electrocatalysts were prepared through a facile zeolitic imidazolate framework (ZIF-8) template method for ORR. The structure, morphology, and composition of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrocatalytic performances of the prepared materials were investigated by linear sweep voltammetry. Benefiting from the well-defined morphology, high surface area, and porous structure, the MnOx@C-N electrocatalyst showed the highest ORR activity among all investigated materials with the limiting current density of 5.38 mA/cm2 at a rotation speed of 1600 rpm, the positive half-wave potential of 0.645 V vs. RHE, and the electron transfer number of 3.90. This work showcases an effective strategy to enhance ORR activity of MnOx.