Frontiers in Earth Science (Jun 2023)
Multi-decadal observations in the Alps reveal less and wetter snow, with increasing variability
Abstract
Snowpack is an important temporal water storage for downstream areas, a potential source of natural hazards (avalanches or floods) and a prerequisite for winter tourism. Here, we use thousands of manual measurements of the water equivalent of the snow cover (SWE) from almost 30 stations between 1,200 and 2,900 m a.s.l. from four long-term monitoring programs (earliest start in 1937) in the center of the European Alps to derive daily SWE based on snow depth data for each station. The inferred long-term daily SWE time series were analyzed regarding spatial differences, as well as potential temporal changes in variability and seasonal averages during the last 7 decades (1957–2022). The investigation based on important hydro-climatological SWE indicators demonstrates significant decreasing trends for mean SWE (Nov-Apr) and for maximum SWE, as well as a significantly earlier occurrence of the maximum SWE and earlier disappearance of the continuous snow cover. The anomalies of mean SWE revealed that the series of low-snow winters since the 1990s is unprecedented since the beginning of measurements. Increased melting during the accumulation period below 2000 m a.s.l is also observed–especially in the most recent years–as well as slower melt rates in spring, and higher day-to-day variability. For these trends no regional differences were found despite the climatological variability of the investigated stations. This indicates that the results are transferable to other regions of the Alps.
Keywords