Lactobacillus-derived protoporphyrin IX and SCFAs regulate the fiber size via glucose metabolism in the skeletal muscle of chickens
Liyuan Cai,
Xinkai Wang,
Xiaoyan Zhu,
Yunzheng Xu,
Wenxia Qin,
Jing Ren,
Qin Jiang,
Xianghua Yan
Affiliations
Liyuan Cai
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Xinkai Wang
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Xiaoyan Zhu
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Yunzheng Xu
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Wenxia Qin
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Jing Ren
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Qin Jiang
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Xianghua Yan
National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
ABSTRACT The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.