Frontiers in Zoology (Aug 2006)

Control of annual reproductive cycle in the subtropical house sparrow <it>(Passer domesticus): </it>evidence for conservation of photoperiodic control mechanisms in birds

  • Rani Sangeeta,
  • Trivedi Amit K,
  • Kumar Vinod

DOI
https://doi.org/10.1186/1742-9994-3-12
Journal volume & issue
Vol. 3, no. 1
p. 12

Abstract

Read online

Abstract Background In many birds, day length (=photoperiod) regulates reproductive cycle. The photoperiodic environment varies between different seasons and latitudes. As a consequence, species at different latitudes may have evolved separate photoperiodic strategies or modified them as per their adaptive need. We studied this using house sparrow as a model since it is found worldwide and is widely investigated. In particular, we examined whether photoperiodism in house sparrows (Passer domesticus) at 27°N, 81°E shared features with those exhibited by its conspecifics at high latitudes. Results Initial experiment described in the wild and captive conditions the gonad development and molt (only in captives) cycles over a 12-month period. Both male and female sparrows had similar seasonal cycles, linked with annual variations in day length; this suggested that seasonal reproduction in house sparrows was under the photoperiodic control. However, a slower testis and attenuated follicular growth among captives indicated that other (supplementary) factors are also involved in controlling the reproductive cycle. Next experiment examined if sparrows underwent seasonal variations in their response to stimulatory effects of long day lengths. When birds were transferred every month over a period of 1 year to 16 hours light:8 hours darkness (16L:8D) for 17–26 weeks, there was indeed a time-of-year effect on the growth-regression cycle of gonads. The final experiment investigated response of house sparrows to a variety of light-dark (LD) cycles. In the first set, sparrows were exposed for 31 weeks to photoperiods that were close to what they receive in between the period from sunrise to sunset at this latitude: 9L:15D (close to shortest day length in December), 12L:12D (equinox, in March and September) 15L:9D (close to longest day length in June). They underwent testicular growth and regression and molt in 12L and 15L photoperiods, but not in 9L photoperiod. In the second set, sparrows were exposed for 17 weeks to photoperiods with light periods extending to different duration of the daily photosensitivity rhythm (e.g. 2L:22D, 6L:18D, 10L:14D, 14L:10D, 18L:6D and 22L:2D). Interestingly, a slow and small testicular response occurred under 2L and 10L photoperiods; 6L:18D was non-inductive. On the other hand, 14L, 18L and 22L photoperiods produced testicular growth and subsequent regression response as is typical of a long day photostimulation. Conclusion Subtropical house sparrows exhibit photoperiodic responses similar to that is reported for its population living at high latitudes. This may suggest the conservation of the photoperiodic control mechanisms in birds evolved over a long period of time, as a physiological strategy in a temporally changing environment ensuring reproduction at the best suited time of the year.