Future Internet (Apr 2021)
Exploring the Roles of Local Mobility Patterns, Socioeconomic Conditions, and Lockdown Policies in Shaping the Patterns of COVID-19 Spread
Abstract
The COVID-19 crisis has shown that we can only prevent the risk of mass contagion through timely, large-scale, coordinated, and decisive actions. This pandemic has also highlighted the critical importance of generating rigorous evidence for decision-making, and actionable insights from data, considering further the intricate web of causes and drivers behind observed patterns of contagion diffusion. Using mobility, socioeconomic, and epidemiological data recorded throughout the pandemic development in the Santiago Metropolitan Region, we seek to understand the observed patterns of contagion. We characterize human mobility patterns during the pandemic through different mobility indices and correlate such patterns with the observed contagion diffusion, providing data-driven models for insights, analysis, and inferences. Through these models, we examine some effects of the late application of mobility restrictions in high-income urban regions that were affected by high contagion rates at the beginning of the pandemic. Using augmented synthesis control methods, we study the consequences of the early lifting of mobility restrictions in low-income sectors connected by public transport to high-risk and high-income communes. The Santiago Metropolitan Region is one of the largest Latin American metropolises with features that are common to large cities. Therefore, it can be used as a relevant case study to unravel complex patterns of the spread of COVID-19.
Keywords