Advanced Science (May 2023)

Bio‐Inspired Multiscale Design for Strong and Tough Biological Ionogels

  • Kaiyue Cao,
  • Ying Zhu,
  • Zihao Zheng,
  • Wanke Cheng,
  • Yifei Zi,
  • Suqing Zeng,
  • Dawei Zhao,
  • Haipeng Yu

DOI
https://doi.org/10.1002/advs.202207233
Journal volume & issue
Vol. 10, no. 13
pp. n/a – n/a

Abstract

Read online

Abstract Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale‐structured ionogel (M‐gel) via ionothermal‐stimulated silk fiber splitting and moderate molecularization in the cellulose‐ions matrix is reported. The produced M‐gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M‐gel, the resultant biomimetic M‐gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m−3, and instantaneous impact resistance of 3.07 kJ m−1, which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load‐bearing materials requiring greater impact resistance.

Keywords