Physics Letters B (Aug 2024)

Entropic uncertainty relations in Schwarzschild space-time

  • Tian-Yu Wang,
  • Dong Wang

Journal volume & issue
Vol. 855
p. 138876

Abstract

Read online

The uncertainty principle is deemed as one of cornerstones in quantum mechanics, and exploring its lower limit of uncertainty will be helpful to understand the principle's nature. In this study, we propose a generalized entropic uncertainty relation for arbitrary multiple-observable in multipartite system, and further derive a tighter lower bound by considering Holevo quality and mutual information. Importantly, we detailedly discuss the proposed uncertainty relations and quantum coherence in the context of Schwarzschild space-time. It is interesting to find that Hawking radiation will damage the coherence of the physically accessible region and increase the uncertainty. Furthermore, we argue that the properties of the uncertainty in Schwarzschild space-time can be explained from the systems' purity and the information redistribution of the different regions. Therefore, it is believed that our findings provide the generalized entropic uncertainty relations in multipartite systems, which may facilitate us deeper understanding of quantumness and information paradox of the black holes.