Sensors (Nov 2020)

Improving the Voltammetric Determination of Hg(II): A Comparison Between Ligand-Modified Glassy Carbon and Electrochemically Reduced Graphene Oxide Electrodes

  • Matei D. Raicopol,
  • Andreea M. Pandele,
  • Constanţa Dascălu,
  • Eugeniu Vasile,
  • Anamaria Hanganu,
  • Gabriela-Geanina Vasile,
  • Ioana Georgiana Bugean,
  • Cristian Pirvu,
  • Gabriela Stanciu,
  • George-Octavian Buica

DOI
https://doi.org/10.3390/s20236799
Journal volume & issue
Vol. 20, no. 23
p. 6799

Abstract

Read online

A new thiosemicarbazone ligand was immobilized through a Cu(I)-catalyzed click reaction on the surface of glassy carbon (GC) and electrochemically reduced graphene oxide (GC-ERGO) electrodes grafted with phenylethynyl groups. Using the accumulation at open circuit followed by anodic stripping voltammetry, the modified electrodes showed a significant selectivity and sensibility for Hg(II) ions. A detection limit of 7 nM was achieved with the GC modified electrodes. Remarkably, GC-ERGO modified electrodes showed a significantly improved detection limit (0.8 nM), sensitivity, and linear range, which we attribute to an increased number of surface binding sites and better electron transfer properties. Both GC and GC-ERGO modified electrodes proved their applicability for the analysis of real water samples.

Keywords