Formaldehyde Oxidation of Ce<sub>0.8</sub>Zr<sub>0.2</sub>O<sub>2</sub> Nanocatalysts for Room Temperature: Kinetics and Effect of pH Value
Zonglin Yang,
Gaoyuan Qin,
Ruijiu Tang,
Lijuan Jia,
Fang Wang,
Tiancheng Liu
Affiliations
Zonglin Yang
College of Chemistry and Environment, Yunnan Minzu University, Technology Innovation Team of Green Purification Technology for Industrial Waste Gas, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials, Yunnan Province Education Department, Kunming 650504, China
Gaoyuan Qin
China Energy Engineering Group Yunnan Electric Power Design Institute Co., Ltd., Kunming 650051, China
Ruijiu Tang
College of Chemistry and Environment, Yunnan Minzu University, Technology Innovation Team of Green Purification Technology for Industrial Waste Gas, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials, Yunnan Province Education Department, Kunming 650504, China
Lijuan Jia
College of Chemistry and Environment, Yunnan Minzu University, Technology Innovation Team of Green Purification Technology for Industrial Waste Gas, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials, Yunnan Province Education Department, Kunming 650504, China
Fang Wang
College of Chemistry and Environment, Yunnan Minzu University, Technology Innovation Team of Green Purification Technology for Industrial Waste Gas, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials, Yunnan Province Education Department, Kunming 650504, China
Tiancheng Liu
College of Chemistry and Environment, Yunnan Minzu University, Technology Innovation Team of Green Purification Technology for Industrial Waste Gas, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials, Yunnan Province Education Department, Kunming 650504, China
Ce0.8Zr0.2O2 catalysts were prepared via the co-precipitation method under different pH conditions. The catalysts were characterized via TEM, XRD, XPS, BET, Raman, and FTIR. The oxidation performance of formaldehyde was tested. Precipitation pH affects the physicochemical properties and performance of the Ce0.8Zr0.2O2 catalyst. By controlling the precipitation pH at 10.5, the Ce0.8Zr0.2O2 catalyst with the largest specific surface area, the smallest grain size with the best formaldehyde removal rate (98.85%), abundant oxygen vacancies, and the best oxidation performance were obtained. Meanwhile, the kinetic parameters of the catalyst were experimentally investigated and the calculated activation energy was 12.6 kJ/mol and the number of reaction steps was 1.4 and 1.2.