Heliyon (Feb 2024)
Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of Eucalyptus radiata
Abstract
The growing microbial resistance against antibiotics and the development of resistant strains has shifted the interests of many scientists to focus on metallic nanoparticle applications. Although several metal oxide nanoparticles have been synthesized using green route approach to measure their antimicrobial activity, there has been little or no literature on the use of Eucalyptus robusta Smith aqueous leaf extract mediated zinc oxide nanoparticles (ZnONPs). The study therefore examined the effect of two morphological nanostructures of Eucalyptus robusta Sm mediated ZnONPs and their antimicrobial and antifungal potential on some selected pathogens using disc diffusion method. The samples were characterized using Scanning and Transmission Electron Microscopy, Energy-Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy. From the results, the two ZnO samples were agglomerated with zinc oxide nanocrystalline structure sample calcined at 400 °C (ZnO NS400) been spherical in shape while zinc oxide nanocrystalline structure sample calcined at 60 °C (ZnO NS60) was rod-like. The sample calcined at higher temperature recorded the smallest particle size of 49.16 ± 1.6 nm as compared to the low temperature calcined sample of 51.04 ± 17.5 nm. It is obvious from the results that, ZnO NS400 exhibited better antibacterial and antifungal activity than ZnO NS60. Out of the different bacterial and fungal strains, ZnO NS400 sample showed an enhanced activity against S. aureus (17.2 ± 0.1 mm) bacterial strain and C. albicans (15.7 ± 0.1 mm) fungal strain at 50 mg/ml. Since this sample showed higher antimicrobial and antifungal activity, it may be explored for its applications in some fields including medicine, agriculture, and aquaculture industry in combating some of the pathogens that has been a worry to the sector. Notwithstanding, the study also provides valuable insights for future studies aiming to explore the antimicrobial potential of other plant extracts mediated zinc oxide nanostructures.