Big Data and Cognitive Computing (Aug 2024)

DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain Tumor Detection

  • Sara Tehsin,
  • Inzamam Mashood Nasir,
  • Robertas Damaševičius,
  • Rytis Maskeliūnas

DOI
https://doi.org/10.3390/bdcc8090097
Journal volume & issue
Vol. 8, no. 9
p. 97

Abstract

Read online

Brain tumors are the result of irregular development of cells. It is a major cause of adult demise worldwide. Several deaths can be avoided with early brain tumor detection. Magnetic resonance imaging (MRI) for earlier brain tumor diagnosis may improve the chance of survival for patients. The most common method of diagnosing brain tumors is MRI. The improved visibility of malignancies in MRI makes therapy easier. The diagnosis and treatment of brain cancers depend on their identification and treatment. Numerous deep learning models are proposed over the last decade including Alexnet, VGG, Inception, ResNet, DenseNet, etc. All these models are trained on a huge dataset, ImageNet. These general models have many parameters, which become irrelevant when implementing these models for a specific problem. This study uses a custom deep-learning model for the classification of brain MRIs. The proposed Disease and Spatial Attention Model (DaSAM) has two modules; (a) the Disease Attention Module (DAM), to distinguish between disease and non-disease regions of an image, and (b) the Spatial Attention Module (SAM), to extract important features. The experiments of the proposed model are conducted on two multi-class datasets that are publicly available, the Figshare and Kaggle datasets, where it achieves precision values of 99% and 96%, respectively. The proposed model is also tested using cross-dataset validation, where it achieved 85% accuracy when trained on the Figshare dataset and validated on the Kaggle dataset. The incorporation of DAM and SAM modules enabled the functionality of feature mapping, which proved to be useful for the highlighting of important features during the decision-making process of the model.

Keywords