Although substantial progress has been made in treating patients with advanced melanoma with targeted and immuno-therapies, de novo and acquired resistance is commonplace. After treatment failure, therapeutic options are very limited and novel strategies are urgently needed. Combination therapies are often more effective than single agents and are now widely used in clinical practice. Thus, there is a strong need for a comprehensive computational resource to define rational combination therapies. We developed a Shiny app, DRepMel to provide rational combination treatment predictions for melanoma patients from seventy-three thousand combinations based on a multi-omics drug repurposing computational approach using whole exome sequencing and RNA-seq data in bulk samples from two independent patient cohorts. DRepMel provides robust predictions as a resource and also identifies potential treatment effects on the tumor microenvironment (TME) using single-cell RNA-seq data from melanoma patients. Availability: DRepMel is accessible online.