Molecules (2020-07-01)

Dynamic Effects of Laser Action on Quasi-Two-Dimensional Dusty Plasma Systems of Charged Particles

  • Mikhail M. Vasiliev,
  • Oleg F. Petrov,
  • Anastasiya A. Alekseevskaya,
  • Alexander S. Ivanov,
  • Elena V. Vasilieva

Journal volume & issue
Vol. 25, no. 3375
p. 3375


Read online

We present the results of an experimental study of the behavior of a colloidal plasma system formed by copper-coated and uncoated polymer particles under the action of laser irradiation. A comparative study of particle velocity distribution profiles depending on the power of the pushing laser was conducted. In the case of uncoated melamine-formaldehyde (MF) particles, we observed the well-known action of light pressure, causing shear stress in the colloidal plasma structure and leading to the occurrence of a laminar flow within the affected area. For the copper-coated MF particles, we revealed some additional patterns of behavior for the dust particles, i.e., kinetic temperature growth due to laser radiation absorption by the copper coating, as well as the appearance of chaotic particle motion. We believe that this happens due to the existence of defects in the coating, causing asymmetric heating of the particles, which in turn leads to chaotic deviations of the photophoretic force pushing the particles in different directions.