Molecular Oncology (Feb 2024)

Repositioning VU‐0365114 as a novel microtubule‐destabilizing agent for treating cancer and overcoming drug resistance

  • Yao‐Yu Hsieh,
  • Jia‐Ling Du,
  • Pei‐Ming Yang

DOI
https://doi.org/10.1002/1878-0261.13536
Journal volume & issue
Vol. 18, no. 2
pp. 386 – 414

Abstract

Read online

Microtubule‐targeting agents represent one of the most successful classes of anticancer agents. However, the development of drug resistance and the appearance of adverse effects hamper their clinical implementation. Novel microtubule‐targeting agents without such limitations are urgently needed. By employing a gene expression‐based drug repositioning strategy, this study identifies VU‐0365114, originally synthesized as a positive allosteric modulator of human muscarinic acetylcholine receptor M5 (M5 mAChR), as a novel type of tubulin inhibitor by destabilizing microtubules. VU‐0365114 exhibits a broad‐spectrum in vitro anticancer activity, especially in colorectal cancer cells. A tumor xenograft study in nude mice shows that VU‐0365114 slowed the in vivo colorectal tumor growth. The anticancer activity of VU‐0365114 is not related to its original target, M5 mAChR. In addition, VU‐0365114 does not serve as a substrate of multidrug resistance (MDR) proteins, and thus, it can overcome MDR. Furthermore, a kinome analysis shows that VU‐0365114 did not exhibit other significant off‐target effects. Taken together, our study suggests that VU‐0365114 primarily targets microtubules, offering potential for repurposing in cancer treatment, although more studies are needed before further drug development.

Keywords