Plant Methods (Apr 2021)

HANDY: a device for assessing resistance to mechanical crushing of maize kernel

  • Yuan Su,
  • Yang Xu,
  • Tao Cui,
  • Xiaojun Gao,
  • Guoyi Xia,
  • Yibo Li,
  • Mengmeng Qiao,
  • Yingbo Yu

DOI
https://doi.org/10.1186/s13007-021-00729-2
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background How to control the physical damage during maize kernel harvesting is a major problem for both mechanical designers and plant breeders. A limitation of addressing this problem is lacking a reliable method for assessing the relation between kernel damage susceptibility and threshing quality. The design, construction, and testing of a portable tool called “HANDY”, which can assess the resistance to mechanical crushing in maize kernel. HANDY can impact the kernel with a special accelerator at a given rotating speed and then cause measurable damage to the kernel. These factors are varied to determine the ideal parameters for operating the HANDY. Results Breakage index (BI, target index of HANDY), decreased as the moisture content of kernel increased or the rotating speed decreased within the tested range. Furthermore, the HANDY exhibited a greater sensitivity in testing kernels at higher moisture level influence on the susceptibility of damage kernel than that in Breakage Susceptibility tests, particularly when the centrifugation speed is about 1800 r/min and the centrifugal disc type is curved. Considering that the mechanical properties of kernels vary greatly as the moisture content changes, a subsection linear (average goodness of fit is 0.9) to predict the threshing quality is built by piecewise function analysis, which is divided by kernel moisture. Specifically, threshing quality is regarded as a function of the measured result of the HANDY. Five maize cultivars are identified with higher damage resistance among 21 tested candidate varieties. Conclusions The HANDY provides a quantitative assessment of the mechanical crushing resistance of maize kernel. The BI is demonstrated to be a more robust index than breakage susceptibility (BS) when evaluating threshing quality in harvesting in terms of both reliability and accuracy. This study also offers a new perspective for evaluating the mechanical crushing resistance of grains and provides technical support for breeding and screening maize varieties that are suitable for mechanical harvesting.

Keywords