Sensors (Jul 2019)

Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning

  • Faris Elasha,
  • Suliman Shanbr,
  • Xiaochuan Li,
  • David Mba

DOI
https://doi.org/10.3390/s19143092
Journal volume & issue
Vol. 19, no. 14
p. 3092

Abstract

Read online

Deployment of large-scale wind turbines requires sophisticated operation and maintenance strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes to combine two supervised machine learning techniques, namely, regression model and multilayer artificial neural network model, to predict the RUL of an operational wind turbine gearbox using vibration measurements. Root Mean Square (RMS), Kurtosis (KU) and Energy Index (EI) were analysed to define the bearing failure stages. The proposed methodology was evaluated through a case study involving vibration measurements of a high-speed shaft bearing used in a wind turbine gearbox.

Keywords