Engineering and Technology Journal (Feb 2021)

Effect of Laser Treatment on the Surface Roughness of Multilayer Plasma Sprayed Thermal Barrier Coating System

  • Mais A. Habeeb,
  • Mohammed J. Kadhim,
  • Fadhil A. Hashim,
  • Maryam A. bash

DOI
https://doi.org/10.30684/etj.v39i2A.1570
Journal volume & issue
Vol. 39, no. 2A
pp. 180 – 188

Abstract

Read online

Thermal barrier coatings (TBCs) are used in advanced engines working at higher temperatures. Higher efficiency and performance of gas turbine engines will require careful selection of TBCs. In this study, Ni22Cr10Al1.0Y (Amdry 9625) bond coat and two types of top coat including ceria stabilized zirconia (CSZ) ZrO2-24CeO2-2.5Y2O3) and yttria stabilized zirconia (YSZ) ZrO2-8Y2O3 were deposited on IN 625 by airplasma spraying (APS). The thickness of the duplex ceramic coat based on zirconia was in the range between 350 to 400 μm. The effect of high power Yb:YAG solid state laser at different laser parameters on feature, microstructure and roughness of plasma sprayed and laser sealed coating of multilayer ceria stabilized zirconia/ yttria stabilized zirconia was investigated. Surface roughness has been reduced significantly after laser sealing. The effect of laser process parameters carried out using Taguchi’s L16 orthogonal array design. Minimum roughness can be obtained at moderate power density and longer interaction time with sufficient specific energy to produce complete melting of coating. Characterization and analysis of results was achieved by employing scanning electron microscopy (SEM) , (EDS) and image J analysis. It was found from the results, there were significant improvements in the performance of plasma sprayed coatings after laser sealing due to the reduction of surface coating defects.

Keywords