Bilayer nanocarbon heterojunction for full-solution processed flexible all-carbon visible photodetector
Zhe Zhou,
Yamei Ding,
Haiyun Ma,
Lijun Cao,
Xiang Wang,
Xiao Huang,
Juqing Liu,
Wei Huang
Affiliations
Zhe Zhou
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Yamei Ding
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Haiyun Ma
Nanjing Tech Law School, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Lijun Cao
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Xiang Wang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Xiao Huang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Juqing Liu
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Wei Huang
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
Low-dimensional carbon nanomaterials have emerged as promising materials for optoelectronic devices, fueled by their predominant optical and electronic properties. Herein, by utilizing a bilayer nanocarbon heterojunction comprising one dimensional (1D) single-walled carbon nanotubes and zero dimensional (0D) fullerenes (C60), a flexible all-carbon visible photodetector consisting of the bilayer nanocarbon heterojunction onto parallel dimethyl sulfoxide -doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) electrodes is fabricated on a polyethylene terephthalate substrate via the full-solution process. The obtained photodetector exhibits excellent air-stable photosensitivity under the visible light condition with a high light/dark current ratio, which is attributed to the efficient separation of photogenerated electron-hole pairs at the interface of the bilayer heterojunction. Moreover, the photodetector shows stable photoresponse during the bending test with a small bending radius owing to its intrinsic flexible properties of each component. This work affords new opportunities for high-throughput fabrication of next-generation flexible carbon electronics toward greener electronics.