Journal of the Mechanical Behavior of Materials (Sep 2023)

Effect of lightweight expanded clay aggregate as partial replacement of coarse aggregate on the mechanical properties of fire-exposed concrete

  • Abdullah Alaa H.,
  • Mohammed Shatha D.

DOI
https://doi.org/10.1515/jmbm-2022-0299
Journal volume & issue
Vol. 32, no. 1
pp. 87 – 92

Abstract

Read online

As aggregate material typically comprises 65–75% of concrete volume and has a significant effect on its mechanical properties, aggregate type considerably affects concrete behavior at high temperatures. In this study, 80 concrete cylinders and 60 cubes were cast to investigate the residual strength of normal concrete that contains lightweight expanded clay aggregate (LECA) with different volumetric replacement ratios (0, 10, 20, and 30%) of the coarse aggregate. After the fire flame exposure effect of steady-state temperatures (300, 400, 500, and 600°C), and a sudden cooling process, the mechanical tests (compressive strength, tensile strength, and modulus of elasticity; Ec), as well as mass loss and thermal conductivity, were carried out on the specimens. The results indicate that increasing the LECA content in the mixture leads to better strength retention after exposure to fire. After exposure to a steady-state temperature of 600°C, the amount of decrease in mass, residual compressive and tensile strengths, and the residual amount of Ec were 7.61, 7.5, 7.16, and 6.24%; 57.1, 66.8, 69.8, and 72.0%; 22.4, 32.7, 41.8, and 48.6%;, and 16.0, 22.3, 23.4, and 24.3%, respectively, for the considered volumetric replacement ratios of 0, 10, 20, and 30%. Also, the values of the thermal conductivity were 1.4889, 1.1667, 1.0912, and 1.0410 W/m K, respectively.

Keywords