Applied Sciences (Apr 2022)

The Impact of Rising Reservoir Water Level on the Gravity Field and Seismic Activity in the Reservoir Area: Evidence from the Impoundment of the Three Gorges Reservoir (China)

  • Qingxiao Meng,
  • Yunsheng Yao,
  • Wulin Liao,
  • Lifen Zhang,
  • Xuehui Dang

DOI
https://doi.org/10.3390/app12084085
Journal volume & issue
Vol. 12, no. 8
p. 4085

Abstract

Read online

Using the test–retest data of the relative gravity field and earthquake monitoring catalog of the Three Gorges Reservoir (TGR) from October 2001 to October 2009, this paper systematically analyzes the changes in the gravity field in the head area of the reservoir and the temporal and spatial distribution characteristics of seismic activity during the impoundment process. It also employs the surrogate reshuffling tests to calculate the cross-correlation between the reservoir water level and the seismic activity sequence and discusses the influence of the rising reservoir water level on the gravity field and seismic activity in the reservoir region. Then, by constructing a three-dimensional finite-difference model based on the theory of fluid–solid coupling, the mechanism of reservoir-induced earthquakes is discussed from the aspects of direct reservoir water load and reservoir water infiltration. The results show that: (1) The rising reservoir water level has had a critical impact on the gravity field and seismic activity in the reservoir’s head area. The cumulative changes in the gravity field from October 2001 to November 2008 show that water impounding has led to a huge banded positive anomaly of gravity along the river near Xiangxi, which reached 450 × 10−8 ms−2. The seismicity activity dominated by micro-earthquakes after a 135 m water level rose rapidly, and the monthly average earthquake frequency increased from 2.00 before the impoundment to 92.60 after the 175 m stage. (2) From the beginning of the impoundment to the experimental impoundment stage of 175 m, the time series correlation test result between the monthly frequency of earthquakes and the water level of the reservoir also changed from uncorrelated before the water storage to correlated when the time lag was 0 months at a 95% confidence threshold. This indicates that the seismic activity obviously has a direct relationship with the load pressure produced by the rapid rise of the reservoir water level, which causes the instability of the mines, karst caves, shallow rock strata, and faults within 10 km along the river and near the reservoir bank, and consequently induces earthquakes. (3) As the TGR enters the 175 m high-level operation stage, the cross-correlation test confirmed that the seismic activity and the reservoir water level show negative correlation characteristics under the time lag of 4 to 5 months, indicating that the seismic activity has a lagging response to the reservoir water level change. The continued infiltration of the reservoir water, followed by the softening of the faults and other actions, triggered the Xiangxi M4.1 earthquake at the center of the four quadrants of gravity anomalies near Xiangxi on 22 November 2008. The Xiangxi segment of the reservoir and its periphery, a triangular geological region where the Xiannvshan faults, the Jiuwanxi fault, and the Yangtze River meet, might be at risk of having reservoir-induced tectonic earthquakes.

Keywords