Remote Sensing (May 2022)
Research on Lightweight Disaster Classification Based on High-Resolution Remote Sensing Images
Abstract
With the increasing frequency of natural disasters becoming, it is very important to classify and identify disasters. We propose a lightweight disaster classification model, which has lower computation and parameter quantities and a higher accuracy than other classification models. For this purpose, this paper specially proposes the SDS-Network algorithm, which is optimized on ResNet, to deal with the above problems of remote sensing images. First, it implements the spatial attention mechanism to improve the accuracy of the algorithm; then, the depth separable convolution is introduced to reduce the number of model calculations and parameters while ensuring the accuracy of the algorithm; finally, the effect of the model is increased by adjusting some hyperparameters. The experimental results show that, compared with the classic AlexNet, ResNet18, VGG16, VGG19, and Densenet121 classification models, the SDS-Network algorithm in this paper has a higher accuracy, and when compared with the lightweight models mobilenet series, shufflenet series, squeezenet series, and mnasnet series, it has lower model complexity and a higher accuracy rate. According to a comprehensive performance comparison of the charts made in this article, it is found that the SDS-Network algorithm is still better than the regnet series algorithm. Furthermore, after verification with a public data set, the SDS-Network algorithm in this paper is found to have a good generalization ability. Thus, we can conclude that the SDS-Network classification model of the algorithm in this paper has a good classification effect, and it is suitable for disaster classification tasks. Finally, it is verified on public data sets that the proposed SDS-Network has good generalization ability and portability.
Keywords