Bioactive Materials (Feb 2022)
Human osteoclast formation and resorptive function on biomineralized collagen
Abstract
Biomineralized collagen composite materials pose an intriguing alternative to current synthetic bone graft substitutes by offering a biomimetic composition that closely resembles native bone. We hypothesize that this composite can undergo cellular resorption and remodeling similar to natural bone. We investigate the formation and activity of human osteoclasts cultured on biomineralized collagen and pure collagen membranes in comparison to cortical bone slices. Human monocytes/macrophages from peripheral blood differentiate into multinucleated, tartrate-resistant alkaline phosphatase (TRAP)-positive osteoclast-like cells on all substrates. These cells form clear actin rings on cortical bone, but not on biomineralized collagen or pure collagen membranes. Osteoclasts form resorption pits in cortical bone, resulting in higher calcium ion concentration in cell culture medium; however, osteoclast resorption of biomineralized collagen and collagen membranes does not measurably occur. Activity of osteoclast enzymes – TRAP, carbonic anhydrase II (CA-II), and cathepsin-K (CTS-K) – is similar on all substrates, despite phenotypic differences in actin ring formation and resorption. The mesh-like structure, relatively low stiffness, and lack of RGD-containing binding domains are likely the factors responsible for preventing formation of stable actin rings on and resorption of (biomineralized) collagen membranes. This insight helps to guide further research toward the optimized design of biomineralized collagen composites as a more biomimetic bone-graft substitute.