Journal of Shipping and Trade (Jan 2024)

4400 TEU cargo ship dynamic analysis by Gaidai reliability method

  • Oleg Gaidai,
  • Fang Wang,
  • Yu Cao,
  • Zirui Liu

DOI
https://doi.org/10.1186/s41072-023-00159-4
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Modern cargo vessel transport constitutes an important part of global economy; hence it is of paramount importance to develop novel, more efficient reliability methods for cargo ships, especially if onboard recorded data is available. Classic reliability methods, dealing with timeseries, do not have the advantage of dealing efficiently with system high dimensionality and cross-correlation between different dimensions. This study validates novel structural reliability method suitable for multi-dimensional structural systems versus a well-established bivariate statistical method. An example of this reliability study was a chosen container ship subjected to large deck panel stresses during sailing. Risk of losing containers, due to extreme motions is the primary concern for ship cargo transport. Due to non-stationarity and complicated nonlinearities of both waves and ship motions, it is challenging to model such a phenomenon. In the case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned. Therefore, data measured on actual ships during their voyages in harsh weather provides a unique insight into statistics of ship motions. This study aimed at benchmarking and validation of the state-of-the-art method, which enables extraction of the necessary information about the extreme system dynamics from onboard measured time histories. The method proposed in this study opens up broad possibilities of predicting simply, yet efficiently potential failure or structural damage risks for the nonlinear multi-dimensional cargo vessel dynamic systems as a whole. Note that advocated novel reliability method can be used for a wide range of complex engineering systems, thus not limited to cargo ship only.

Keywords