BioResources (Feb 2012)
EFFECT OF MALEIC ANHYDRIDE ON KENAF DUST FILLED POLYCAPROLACTONE/THERMOPLASTIC SAGO STARCH COMPOSITES
Abstract
The utilization of biodegradable polymers for various applications has been restricted mainly by its high cost. This report aims to study the water absorption and mechanical properties of kenaf dust-filled polycaprolactone/thermoplastic sago starch biodegradable composites as a function of filler loading and treatment with maleic anhydride. While water absorption in untreated biocomposites increased as a function of filler loading, treated biocomposites resulted in weight loss, whereby low molecular weight substances were dissolved into the aging medium. The kenaf dust imparts reinforcing effects on the biocomposites, resulting in improved mechanical properties. This is further attested by morphological studies in which kenaf dust was well dispersed in the polycaprolactone/ thermoplastic sago starch blend matrix. The addition of maleic anhydride into the polycaprolactone/thermoplastic sago starch blend resulted in a homogeneous mixture. At low filler loading, strain at break of the maleated polycaprolactone/thermoplastic sago starch blend increased at the expense of tensile strength and modulus. This is most likely due to the excessive dicumyl peroxide content, which caused chain scission of the polycaprolactone backbone. Tensile strength and modulus improved only when high filler loading was employed.