Nanomaterials (Feb 2020)

Synthesis and Cytotoxicity Studies on Ru and Rh Nanoparticles as Potential X-Ray Fluorescence Computed Tomography (XFCT) Contrast Agents

  • Yuyang Li,
  • Kian Shaker,
  • Martin Svenda,
  • Carmen Vogt,
  • Hans M. Hertz,
  • Muhammet S. Toprak

DOI
https://doi.org/10.3390/nano10020310
Journal volume & issue
Vol. 10, no. 2
p. 310

Abstract

Read online

X-Ray fluorescence computed tomography (XFCT) is an emerging biomedical imaging technique, which demands the development of new contrast agents. Ruthenium (Ru) and rhodium (Rh) have spectrally attractive Kα edge energies, qualifying them as new XFCT bio-imaging probes. Metallic Ru and Rh nanoparticles are synthesized by polyol method, in the presence of a stabilizer. The effect of several reaction parameters, including reaction temperature time, precursor and stabilizer concentration, and stabilizer molecular weight, on the size of particles, were studied. Resultant materials were characterized in detail using XRD, TEM, FT-IR, DLS-zeta potential and TGA techniques. Ru particles in the size range of 1−3 nm, and Rh particles of 6−9 nm were obtained. At physiological pH, both material systems showed agglomeration into larger assemblies ranging from 12−104 nm for Ru and 25−50 nm for Rh. Cytotoxicity of the nanoparticles (NPs) was evaluated on macrophages and ovarian cancer cells, showing minimal toxicity in doses up to 50 μg/mL. XFCT performance was evaluated on a small-animal-sized phantom model, demonstrating the possibility of quantitative evaluation of the measured dose with an expected linear response. This work provides a detailed route for the synthesis, size control and characterization of two materials systems as viable contrast agents for XFCT bio-imaging.

Keywords