International Journal of Molecular Sciences (Apr 2018)

In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

  • Luyuan Chen,
  • Satoshi Komasa,
  • Yoshiya Hashimoto,
  • Shigeki Hontsu,
  • Joji Okazaki

DOI
https://doi.org/10.3390/ijms19041127
Journal volume & issue
Vol. 19, no. 4
p. 1127

Abstract

Read online

To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF) pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA). Coating was confirmed by scanning electron microscopy (SEM) and scanning probe microscopy (SPM), while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

Keywords