Journal of Inequalities and Applications (Jan 2019)

Some notes on commutators of the fractional maximal function on variable Lebesgue spaces

  • Pu Zhang,
  • Zengyan Si,
  • Jianglong Wu

DOI
https://doi.org/10.1186/s13660-019-1960-7
Journal volume & issue
Vol. 2019, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Let 0<α<n $0<\alpha<n$ and Mα $M_{\alpha}$ be the fractional maximal function. The nonlinear commutator of Mα $M_{\alpha}$ and a locally integrable function b is given by [b,Mα](f)=bMα(f)−Mα(bf) $[b,M_{\alpha}](f)=bM_{\alpha}(f)-M_{\alpha}(bf)$. In this paper, we mainly give some necessary and sufficient conditions for the boundedness of [b,Mα] $[b,M_{\alpha}]$ on variable Lebesgue spaces when b belongs to Lipschitz or BMO(Rn) $\mathit{BMO}({\mathbb{R}}^{n})$ spaces, by which some new characterizations for certain subclasses of Lipschitz and BMO(Rn) $\mathit{BMO}({\mathbb{R}}^{n})$ spaces are obtained.

Keywords