Soil Systems (Aug 2021)

Biodegradable Hydrogels: Evaluation of Degradation as a Function of Synthesis Parameters and Environmental Conditions

  • Chiara Turioni,
  • Giacomo Guerrini,
  • Andrea Squartini,
  • Francesco Morari,
  • Michele Maggini,
  • Silvia Gross

DOI
https://doi.org/10.3390/soilsystems5030047
Journal volume & issue
Vol. 5, no. 3
p. 47

Abstract

Read online

The development of functional materials that promote the infiltration and retention of water and the controlled release of fertilizers and nutrients in soil is of interest in agriculture. In this context, hydrogels, three-dimensional polymeric structures able to absorb high amounts of water in their swelling process, play an important role. The swelling ability of hydrogels depends on their crosslinking: the higher the crosslinking degree, the higher the number of interactions in the structure, the lower the swelling response. In this work, we describe biodegradable hydrogels composed of natural feedstocks: cellulose, clay minerals, and humic acids, designed to (i) protect, hydrate, and help germinating seedlings to root even in unfavorable conditions; (ii) sustainably contribute to soil fertility in terms of moisture and nutrients; and (iii) act as a nutritive and protective coating for the seeds. Upon assessing the correlations between curing process and swelling degree (SW), we evaluated the degradation of new biodegradable hydrogels as a function of the synthesis parameters (swelling degree and composition) and environmental conditions (type of soil and water amount for the hydration of the hydrogels). The term curing is hereafter referred to the operation of baking the ingredients at given combinations of time and temperature to obtain a dry hydrogel. The results show that the environmental parameters considered, i.e., amount of hydration water and physical and chemical properties of the soil, play a more decisive role in determining the stability of these hydrogels in soil than their synthesis parameters, such as the composition and the swelling degree.

Keywords