Applied Sciences (Mar 2020)
Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives
Abstract
A one-pot, single-step, and an atom-economical process towards the synthesis of highly functionalized spirooxindoles analogues was efficiently conducted to produce a satisfactory chemical yields (70−93%) with excellent relative diastereo-, and regio-selectivity. An in vitro antiproliferative assay was carried out on different cancer cell lines to evaluate the biological activity of the synthesized tetrahydro-1’H-spiro[indoline-3,5’-pyrrolo[1,2-c]thiazol]-2-one 5a−n. The prepared hybrids were then tested in vitro for their antiproliferative effects against three cancer cell lines, namely, HepG2 (liver cancer), MCF-7 (breast cancer), and HCT-116 (colon cancer). The spirooxindole analogue 5g exhibited a broad activity against HepG2, MCF-7, and HCT-116 cell lines of liver, breast, and colorectal cancers when compared to cisplatin. Modeling studies including shape similarity, lipophilicity scores, and physicochemical parameters were calculated. The results of this study indicated that spirooxindole analogue 5g retained a good physiochemical parameters with acceptable lipophilicity scores.
Keywords