Scientific Dental Journal (Jan 2021)
Antimicrobial efficacy of copper nanoparticles against Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis: An in-vitro study
Abstract
Background: Plaque accumulation on teeth surfaces and prosthetic or orthodontic appliances present a serious challenge for the maintenance of oral health. Copper nanoparticles (NPs) can be incorporated into coatings and applied to restorative materials to prevent plaque formation and the progression of periodontal diseases. Objective: The aim of this article is to evaluate the antimicrobial efficacy of copper NPs against selected periodontal pathogens (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper NPs were determined using broth dilution assay. Copper NPs (size: 30—50 nm, purity: 99.9%) were used for the study. Results: Both P. gingivalis and A. actinomycetemcomitans were sensitive to copper NPs. Nano-copper had a bactericidal effect against P. gingivalis at a concentration of 0.8 μg/mL and a bacteriostatic effect against the bacterium at a concentration of 0.4 μg/mL. For A. actinomycetemcomitans, nano-copper had a bactericidal effect at a concentration of 3.12 μg/mL and a bacteriostatic effect at a 1.6 μg/mL concentration. Conclusion: Nano-copper exhibits an antibacterial effect against periodontal pathogens. Future studies are needed to explore the applicability of these copper-based antimicrobial agents in clinical settings.
Keywords