EJNMMI Physics (Jun 2024)

Improving diagnostic precision in amyloid brain PET imaging through data-driven motion correction

  • Hye Lim Park,
  • Sonya Youngju Park,
  • Mingeon Kim,
  • Soyeon Paeng,
  • Eun Jeong Min,
  • Inki Hong,
  • Judson Jones,
  • Eun Ji Han

DOI
https://doi.org/10.1186/s40658-024-00653-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Head motion during brain positron emission tomography (PET)/computed tomography (CT) imaging degrades image quality, resulting in reduced reading accuracy. We evaluated the performance of a head motion correction algorithm using 18F-flutemetamol (FMM) brain PET/CT images. Methods FMM brain PET/CT images were retrospectively included, and PET images were reconstructed using a motion correction algorithm: (1) motion estimation through 3D time-domain signal analysis, signal smoothing, and calculation of motion-free intervals using a Merging Adjacent Clustering method; (2) estimation of 3D motion transformations using the Summing Tree Structural algorithm; and (3) calculation of the final motion-corrected images using the 3D motion transformations during the iterative reconstruction process. All conventional and motion-corrected PET images were visually reviewed by two readers. Image quality was evaluated using a 3-point scale, and the presence of amyloid deposition was interpreted as negative, positive, or equivocal. For quantitative analysis, we calculated the uptake ratio (UR) of 5 specific brain regions, with the cerebellar cortex as a reference region. The results of the conventional and motion-corrected PET images were statistically compared. Results In total, 108 sets of FMM brain PET images from 108 patients (34 men and 74 women; median age, 78 years) were included. After motion correction, image quality significantly improved (p < 0.001), and there were no images of poor quality. In the visual analysis of amyloid deposition, higher interobserver agreements were observed in motion-corrected PET images for all specific regions. In the quantitative analysis, the UR difference between the conventional and motion-corrected PET images was significantly higher in the group with head motion than in the group without head motion (p = 0.016). Conclusions The motion correction algorithm provided better image quality and higher interobserver agreement. Therefore, we suggest that this algorithm be adopted as a routine post-processing protocol in amyloid brain PET/CT imaging and applied to brain PET scans with other radiotracers.

Keywords