Results in Physics (Sep 2020)
The impact of anion elements on the engineering of the electronic and optical characteristics of the two dimensional monolayer janus MoSSe for nanoelectronic device applications
Abstract
Two-dimensional (2D) materials have gained prominent attention in the nano-electronics arena, owing to their tunable electronic and optical features. Here, the physical properties of a janus MoSSe monolayer are examined upon the chemically co-doping of S/Se sites by non-metallic and halogen elements (C, Si, N, P, As, and F) employing first-principles calculations. Accordingly, an alteration of both the upper valence and the lower conduction states is revealed for janus MoSSe monolayer upon the replacement of both S and Se anion host atoms by sp-elements (C, Si, N, P, As, and F). A shift in the lowest conduction band underneath the Fermi energy level (EF) occurs in janus MoSSe monolayer when both S and Se elements are replaced by (F, F) atoms. This effectively conducted to a system with an n-type character. In contrast, the highest valence bands moved upward EF owing to the co-doping effect of C, Si, N, P, and As atoms on the janus MoSSe monolayer with p-type nature. The key features of the optical spectra, such as the optical absorption, reflectivity, and electron loss functions of the co-doped janus MoSSe monolayer are inspected. Our results imply a modification in the low-energy photon regime of the co-doped janus MoSSe monolayer at S and Se host atoms by non-metallic sp-elements comparatively to the free-standing monolayer. A reduction in the optical absorption and an increase in the reflectivity at low-energy photon window are detected when the janus MoSSe monolayer is co-doped by (C, Si), (N, P), (P,As), and (F,F) elements, respectively at S and Se chalcogen atoms. The current study infers that the co-doping S and Se sites of janus MoSSe monolayers, with sp- elements, can be beneficial in the future applications of 2D materials for the field-effect transistors and nano-electronic devices.