Alexandria Engineering Journal (Jun 2024)
The new kink type and non-traveling wave solutions of (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
Abstract
In this paper, the new solitary wave solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation are obtained by Lie group symmetry method and the extended homoclinic test approach. Firstly, the equation can be reduced to (1+1)-dimensional partial differential equation by Lie group symmetry, and corresponding bilinear forms of the equation are given by symmetry functions. Secondly, the extended homoclinic test approach is employed to obtain the new kink type and singular solitary wave solutions. In addition, some new traveling and non-traveling wave solutions with arbitrary functions and oscillating tail are investigated through the special transformations for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation.