Limnology and Oceanography Letters (Aug 2020)

Paired O2–CO2 measurements provide emergent insights into aquatic ecosystem function

  • Dominic Vachon,
  • Steven Sadro,
  • Matthew J. Bogard,
  • Jean‐François Lapierre,
  • Helen M. Baulch,
  • James A. Rusak,
  • Blaize A. Denfeld,
  • Alo Laas,
  • Marcus Klaus,
  • Jan Karlsson,
  • Gesa A. Weyhenmeyer,
  • Paul A. delGiorgio

DOI
https://doi.org/10.1002/lol2.10135
Journal volume & issue
Vol. 5, no. 4
pp. 287 – 294

Abstract

Read online

Scientific Significance Statement Metabolic stoichiometry predicts that dissolved oxygen (O2) and carbon dioxide (CO2) in aquatic ecosystems should covary inversely; however, field observations often diverge from theoretical expectations. Here, we propose a suite of metrics describing this O2 and CO2 decoupling and introduce a conceptual framework for interpreting these metrics within aquatic ecosystems. Within this framework, we interpret cross‐system patterns of high‐frequency O2 and CO2 measurements in 11 northern lakes and extract emergent insights into the metabolic behavior and the simultaneous roles of chemical and physical forcing in shaping ecosystem processes. This approach leverages the power of high‐frequency paired O2–CO2 measurements, and yields a novel, integrative aquatic system typology which can also be applicable more broadly to streams and rivers, wetlands and marine systems.