Catalysts (Feb 2023)

Ultrasonic Preparation of PN for the Photodegradation of 17β-Estradiol in Water and Biotoxicity Assessment of 17β-Estradiol after Degradation

  • Kun Meng,
  • Kefu Zhou,
  • Chang-Tang Chang

DOI
https://doi.org/10.3390/catal13020332
Journal volume & issue
Vol. 13, no. 2
p. 332

Abstract

Read online

This study prepares a novel phosphorene (PN) and loads it onto TiO2 to fabricate PN-TiO2 and effectively photodegrade the hydrophobic environmental hormone 17β-estradiol in aqueous solutions. The effect of the PN on degradation efficiency is systematically investigated. It is observed that the doping of TiO2 with PN significantly enhances its photocatalytic and adsorption properties compared with that in the absence of PN; that is, the addition improves the adsorption capability of the composite. The optimal PN weight content is found to be 0.5%. The performance of the PN-TiO2 photocatalyst in degrading E2 is around 67.5%. However, its photodegradation efficiency gradually decreases when the PN content is further increased. This optimal PN content directly suggests synergistic interactions affecting the photodegrading efficiency. Compared with other PN-based photocatalysts mentioned in the literature, this PN-based material possesses striking advantages, such as higher energy efficiency, greater removal capacity, and superior cost-effectiveness. Further, the decrease in the biotoxicity of the water after treatment is evident in observing the development of zebrafish embryos. The studies of the catalyst performed on the zebrafish show that it results in a higher mortality rate at 96 h with a superior hatching rate and healthy fish development. In summary, the prepared PN-based materials exhibited promising photocatalytic capabilities for the removal and biotoxicity reduction of 17β-estradiol in aqueous solutions.

Keywords