Saudi Journal of Medicine and Medical Sciences (Jan 2022)

Ruscogenin protects against deoxynivalenol-Induced hepatic injury by inhibiting oxidative stress, inflammation, and apoptosis through the Nrf2 signaling pathway: An In vitro study

  • Hany Elsawy,
  • Peramaiyan Rajendran,
  • Azza Mahmoud Sedky,
  • Manal Alfwuaires

DOI
https://doi.org/10.4103/sjmms.sjmms_725_21
Journal volume & issue
Vol. 10, no. 3
pp. 207 – 215

Abstract

Read online

Background: Deoxynivalenol (DON) is a trichothecene mycotoxin with demonstrated cytotoxicity in several cell lines and animals, primarily owing to inflammation and reactive oxygen species accumulation. Ruscogenin (RGN), a steroidal sapogenin of Radix Ophiopogon japonicus, has significant anti-thrombotic/anti-inflammatory effects. Objective: The aim of this study was to assess the protective role of RGN against DON-induced oxidative stress, which occurs through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and is regulated by phosphoinositide 3-kinases/protein kinase B (PI3K/AKT). Methods: The effects were examined using the HepG2 cell line. RGN and DON were suspended in serum-free medium. Cells were seeded onto plates, and then RGN, DON, or both were added over 24 h in triplicates for each group. Results: RGN conferred protection against DON-exhibited cytotoxicity against HepG2 cells. RGN pretreatment downregulated the expression of DON-induced TNF-α and COX-2 and the formation of reactive oxygen species in a dose-dependent manner. RGN upregulated the expression of Nrf2 and its antioxidant proteins as well as mRNA levels of HO-1/NQO-1/HO-1/Nrf2. Similarly, treatment with DON + RGN resulted in upregulation of the pI3K/pAKT signaling pathway in a dose-dependent manner. Finally, RGN was also found to inhibit the DON-induced apoptosis by upregulating the levels of cleaved proteins and downregulating the expression of Bcl2. Conclusion: The study demonstrates that RGN suppresses hepatic cell injury induced by oxidative stress through Nrf2 via activation of the pI3K/AKT signaling pathway.

Keywords