Endocrine Connections (Sep 2023)

Clinical characteristics and genetic expansion of 46,XY disorders of sex development children in a Chinese prospective study

  • Yijun Tang,
  • Yao Chen,
  • Jiayi Wang,
  • Qianwen Zhang,
  • Yirou Wang,
  • Yufei Xu,
  • Xin Li,
  • Jian Wang,
  • Xiumin Wang

DOI
https://doi.org/10.1530/EC-23-0029
Journal volume & issue
Vol. 12, no. 10
pp. 1 – 23

Abstract

Read online

Diagnosis and management strategy of disorders of sex developme nt (DSD) are difficult and various due to heterogeneous phenotype and genotype. Under widespread use of genomic sequencing technologies, multiple genes and mechanisms have been identified and proposed as genetic causes of 46,XY DSD. In this study, 178 46,XY DSD patients were enrolled and underwent gene sequencing (either whole-exome sequencing or targeted panel gene sequencing). Detailed clinical phenotype and genotype information were summarized which showed that the most common clinical manifestations were micropenis (56.74%, 101/178), cryptorchidism (34.27%, 61/178), and hypospadias (17.42%, 31/178). Androgen synthesis/action disorders and idiopathic hypogonadotropic hypogonadism were the most frequent clinical diagnoses, accounting, respectively, for 40.90 and 21.59%. From all next-generation sequencing results, 103 candidate variants distributed across 32 genes were identified in 88 patients. The overall molecular d etection rate was 49.44% (88/178), including 35.96% (64/178) pathogenic/likely pathogenic variants and 13.48% (24/178) variants of uncertain significance. Of all, 19.42% (20/ 103) variants were first reported in 46,XY DSD patients. Mutation c.680G>A (p.R227Q) on SRD5A2 (steroid 5-alpha-reductase 2) (36.67%, 11/30) was a hotspot mutation in the Chinese population. Novel candidate genes related to DSD (GHR (growth hormone receptor) and PHIP (pleckstrin homology domain-interacting protein)) were identified. Overall, this was a large cohort of 46,XY DSD patients with a common clinical classification and phenotype spectrum of Chinese patients. Targeted gene panel sequencing covered most of the genes contributing to DSD, whereas whole-exome sequencing detected more candidate genes.

Keywords