Microorganisms (Mar 2023)

Evaluation of Shifts of Gene Transcription Levels of Unicellular Green Alga <i>Chlamydomonas reinhardtii</i> Due to UV-C Irradiation

  • Akihito Nakanishi,
  • Nanami Ozawa,
  • Masahiko Watanabe

DOI
https://doi.org/10.3390/microorganisms11030633
Journal volume & issue
Vol. 11, no. 3
p. 633

Abstract

Read online

Green algae produce valuable lipids as carbon-recycling resources. Collecting whole cells with the intracellular lipids could be efficient without cell burst; however, direct use of the cells causes microbial contamination in environments. Then, UV-C irradiation was selected to satisfy the requirements of avoiding the cell burst and sterilizing cells with Chlamydomonas reinhardtii. UV-C irradiation with 1.209 mW·cm−2 showed enough sterilization activity for 1.6 × 107 cells·mL−1 of C. reinhardtii in a depth of 5 mm for 10 min. The irradiation showed no effects to composition and contents of the intracellular lipids. From the viewpoint of transcriptomic analysis, the irradiation displayed possibilities of (i) inhibition of the synthesis of lipids due to decrement of the transcription of related genes, such as diacylglycerol acyl transferase and cyclopropane fatty acid synthase, and (ii) activation of lipid degradation and the production of NADH2+ and FADH2 due to increment of the transcription of related genes, such as isocitrate dehydrogenase, dihydrolipoamide dehydrogenase and malate dehydrogenase. Irradiation until cell death could be insufficient to shift the metabolic flows even though the transcriptions were already shifted to lipid degradation and energy production. This paper is the first report of the response of C. reinhardtii to UV-C irradiation on the transcription level.

Keywords