Advances in Mechanical Engineering (Jan 2013)

An Approach to Define the Heat Flow in Drilling with Different Cooling Systems Using Finite Element Analysis

  • Carlos Henrique Lauro,
  • Lincoln Cardoso Brandão,
  • Thiago Januário Santos Vale,
  • André Luis Christóforo

DOI
https://doi.org/10.1155/2013/612747
Journal volume & issue
Vol. 5

Abstract

Read online

The heat generated in the cutting zone with high-speed drilling causes damage in the machined part. The heat can affect the dimensions of the hole considering its diameter. Moreover, the heat reduces tool life of uncoated and coated tools. This paper shows experimental tests with high-speed drilling in hardened steel. Drilling was performed on AISI H13 steel with dimensions of 100 × 40 × 14 mm and 52 HRC. The work pieces were drilled with coated drills (TiAlN). A flooded lubricant system and the minimal quantity of lubricant (MQL) were applied to investigate the ability to remove heat from the cutting zone and to compare with dry tests. FEM was applied to define the heat flow and the coefficient of convection for the cooling systems. A steepest descent method was employed to minimize the difference between empirical and simulation data. The results showed that the simulation technique used to find values for heat flow and the coefficient of convection were close to the literature reference. In addition, the adjustment errors of the simulated temperature curves were less than 10% when compared with trial curves. Furthermore, the MQL showed a capability of cooling 3.5 times higher than that of the flooded system.