Ti64/20Ag Porous Composites Fabricated by Powder Metallurgy for Biomedical Applications
Luis Olmos,
Ana S. Gonzaléz-Pedraza,
Héctor J. Vergara-Hernández,
Jorge Chávez,
Omar Jimenez,
Elena Mihalcea,
Dante Arteaga,
José J. Ruiz-Mondragón
Affiliations
Luis Olmos
INICIT, Universidad Michoacana de San Nicolás de Hidalgo, Fco. J. Mujica S/N, Morelia C.P. 58060, Mexico
Ana S. Gonzaléz-Pedraza
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
Héctor J. Vergara-Hernández
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
Jorge Chávez
Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Guadalajara C.P. 44430, México
Omar Jimenez
Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, José Guadalupe Zuno # 48, Los Belenes, Zapopan C.P. 45100, Mexico
Elena Mihalcea
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
Dante Arteaga
Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla No. 3001, Querétaro C.P. 76230, Mexico
José J. Ruiz-Mondragón
Corporación Mexicana de Investigación en Materiales SA de CV, Calle Ciencia y Tecnología 790, Fracc. Saltillo 400, Saltillo C.P. 25290, Mexico
We present a novel Ti64/20Ag highly porous composite fabricated by powder metallurgy for biomedical applications and provide an insight into its microstructure and mechanical proprieties. In this work, the Ti64/20Ag highly porous composites were successfully fabricated by the space holder technique and consolidated by liquid phase sintering, at lower temperatures than the ones used for Ti64 materials. The sintering densification was evaluated by dilatometry tests and the microstructural characterization and porosity features were determined by scanning electron microscopy and computed microtomography. Permeability was estimated by numerical simulations on the 3D real microstructure. Mechanical properties were evaluated by simple compression tests. Densification was achieved by interparticle pore filling with liquid Ag that does not drain to the large pores, with additional densification due to the macroscopical deformation of large pores. Pore characteristics are closely linked to the pore formers and the permeability was highly increased by increasing the pore volume fraction, mainly because the connectivity was improved. As expected, with the increase in porosity, the mechanical properties decreased. These results permitted us to gain a greater understanding of the microstructure and to confirm that we developed a promising Ti64/20Ag composite, showing E of 7.4 GPa, σy of 123 MPa and permeability of 3.93 × 10−11 m2. Enhanced adaptability and antibacterial proprieties due to Ag were obtained for bone implant applications.