Applied Sciences (Jun 2021)
Internal Mechanics of a Subject-Specific Wrist in the Sagittal versus Dart-Throwing Motion Plane in Adult and Elder Models: Finite Element Analyses
Abstract
Introduction: Most of the wrist motions occur in a diagonal plane of motion, termed the dart-throwing motion (DTM) plane; it is thought to be more stable compared with movement in the sagittal plane. However, the effect of the altered carpus motion during DTM on the stress distribution at the radiocarpal joint has yet to be explored. Aim: To calculate and compare the stresses between the radius and two carpal bones (the scaphoid and the lunate) in two wrist positions, extension and radial extension (position in DTM), and between an adult and an elder model. Methods: A healthy wrist of a 40-year-old female was scanned using Magnetic Resonance Imaging in two wrist positions (extension, radial extension). The scans were transformed into three-dimensional models and meshed. Finite element (FE) analyses in each position of the wrist were conducted for both adult and elder models, which were differentiated by the mechanical properties of the ligaments. The distal surfaces of the carpal bones articulating with the metacarpals were loaded by physically accurate tendon forces for each wrist position. Results: The von Mises, shear stresses and contact stresses were higher in the extension model compared with the radial-extension model and were higher for the radius-scaphoid interface in the adult model compared with the elder model. In the radius-scaphoid interface, the stress differences between the two wrist positions were smaller in the elder model (11.5% to 22.5%) compared with the adult model (33.6–41.5%). During radial extension, the contact area at the radius-lunate interface was increased, more so in the adult model (222.2%) compared with the elder model (127.9%), while the contact area at the radius-scaphoid was not affected by the position of the wrist in the adult model (100.9%) but decreased in the elder model (50.2%) during radial extension. Conclusion: The reduced stresses during radial extension might provide an explanation to our frequent use of this movement pattern, as the reduced stresses decrease the risk of overuse injury. Our results suggest that this conclusion is relevant to both adults and elder individuals.
Keywords