PLoS ONE (Nov 2007)

Myocontrol in aging.

  • Eric J Fimbel,
  • Martin Arguin

DOI
https://doi.org/10.1371/journal.pone.0001219
Journal volume & issue
Vol. 2, no. 11
p. e1219

Abstract

Read online

Myoelectric (EMG) signals are used in assistive technology for prostheses, computer and domestic control. An experimental study previously conducted with young participants was replicated with elderly persons in order to assess the effect of age on the ability to control myoelectric amplitude (or myocontrol). Participants performed pointing tasks as the myoelectric amplitude was captured by a surface electrode in two modalities (sustained: stabilize the amplitude after reaching the desired level; impulsion: return immediately to resting amplitude). There was a significant decrease of performance with Age. However, the patterns of performance of young and aged were noticeably similar. The Impulsion modality was difficult (high rates of failure) and the speed-accuracy trade-offs predicted by Fitts' law were absent (bow-shaped patterns as function of target amplitude instead of logarithmic increase). Conversely, the reach phase of the Sustained modality followed the predictions of Fitts' law. However, the slope of the regression line with Fitts' index of difficulty was quite steeper in aged than in young participants. These findings suggest that 1) all participants, young and aged, adapt their reaching strategies to the anticipated state (sustained amplitude or not) and/or to the difficulty of the task, 2) myocontrol in aged persons is more fragile, i.e., performance is markedly degraded as the difficulty of the task increases. However, when individual performance was examined, some aged individuals were found to perform as well as the young participants, congruently with the literature on good aging.